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J. Phys. A: Math. Gen., Vol. 8, No. 6, 1975. Printed in Great Britain. Q 1975 

New applications of Poisson’s summation formula 

Andre Hautott 
University of Libge, Institute of Physics, Sart Tilman par 4OOO Libge 1, Belgium 

Received 10 September 1974, in final form 30 December 1974 

Abstract. Fourier expansions in modified Bessel functions are evaluated in terms of elemen- 
tary functions. The results are obtained in the form of rapidly convergent series so that 
numerical computations are quite easy. This leads to the possibility of tabulating the 
modified Bessel functions in their critical domain. A physical application is also given: 
simple expansions giving the Madelung constant for cubic crystallographic structures are 
established ; they involve only elementary functions and exhibit the greatest known accuracy. 

1. Introduction 

One of the most powerful methods for evaluating simple or multiple series is known as 
Poisson’s summation rule. Having to sum the n-uple series : 

+cc 

s = . . . C f ( k , , .  . . ,k,) ( k i  integer) 
all  k, = - m 

one has (Bochner 1932): 
+ m  

s = . . Cg( l , , .  . . , I , )  (li integer) 
all I ,  = - cc 

where g is the Fourier transform off: 

8(Yl9...3Y,) = . . . I exp[2in(x1y, + . . . + x,y,)]f(xl, . . . , x,) dx, . . . dx,. (3) 
- - cc  

Both series must converge uniformly. The Fourier integral off must exist. Poisson’s 
rule transforms the original series into another series whose convergence may be better. 
When the starting series is n-uple it is possible to modify it in many ways by using the 
m-dimensional Poisson formula (with m < n). One possibility may be much more 
interesting than the others since it leads to a better final expansion. In practice there 
is no general rule for deciding whether or not Poisson’s rule will be useful. This is due 
to the fact that a ‘good’ expansion has to fulfil two distinct conditions : 

(i) the general term of the expansion must decrease as rapidly as possible in order 
to ensure a rapid convergence; 

(ii) the general term must be expressed in terms of elementary functions. 
The first question to ask in examining a series (1) is : doesfsatisfy these two conditions? 

If not, then we must look for an m-dimensional Fourier transform offwhich leads to 
a function g of the kind mentioned above. Tables of Fourier transforms exist which 
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allow one to decide when to attempt this procedure. It is clear that the simplest function g 
obeying the two above conditions is the decreasing exponential. Now we know that 
if g is the Fourier transform off,fis in turn the Fourier transform of g. 

As an example let us examine the one-dimensional problem. We set : 

g = exp(-alll). 

Its Fourier transform is 2a/(a2 + 4n2y2). So we have : 

1 I c = - exp( -alll). 
= - a’ + 4n2 k 2  2a , = - 

This relation is well known. Other g functions can be chosen such as : g = exp( - aI2) 
or g = [l/(b2 + 12)] exp( -all[) and so forth, but the corresponding results are either well 
known or of very little interest in applied physics. In the two-dimensional problem, 
the function g can take the following forms : 

g = exp[ - a(/: + 13’12] exp[ - a(/: + 131 etc . . . . or 

Since the list is not limitative it is evident that each case promises to be interesting. 
Functionfis easily derived from g by computing its two-dimensional Fourier transform. 
As shown in 4 4 important new results can be obtained by considering 

f(x, y) = [(2x- 1)2+(2y- 1)2]-’12Kv{a[(2x- 1)2+(2y- 1)2]”2} cos bx cos cy 

where K is the modified Bessel function of the third kind (Abramowitz and Stegun 
1965). Series of the type XZ,,,f(x, y) are often encountered in applied physics. 

We shall show that they can be evaluated with the aid of the two-dimensional Poisson 
formula. The final result will be written as an expansion in terms of elementary functions 
with remarkably rapid convergence. 

2. Evaluation of certain double Fourier series 

We wish to evaluate the following sums ( v  is an integer): 

s,(x, y, z; v) = IC’  (m2 +n2)-’I2KV[z(m2 +n2)’12] cos mx cos ny 

S2(x, y, z ;  v)  = CC [(2m- 1)2+(2n- 1)2]-vi2Kv{z[(2m- 1)2+(2n- 1)2]’i2} 

+ m  

- m  

+ m  

- W  

x cos(2m - l)x cos(2n - l)y 
+ W  

S3(x, y, z ;  v)  = cc‘ (m2 +4n2)-’”Kv[z(m2 +4n2)’12] cos mx cos 2ny 

S,(x, y, z;  v) =; 11 [4m2+(2n- 1)2]-”2Kv{z[4m2+(2n- 1)2]”2} 

- m  

+ W  

- C O  

(4) 

x cos 2mx cos(2n - l)y (7) 

(8) 
+ m  

S,(x, y, z ;  v)  = cc [m2+(2n- 1)2]-V12Kv(z[m2 +(2n- 1)2]1’2} cos mx cos(2n- l)y 
- m  
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+ m  

S,(x,y,z;v) = ~~(4m2+4n2)-'~2Kv[z(4m2+4n2)1~2]cos 2mx cos 2ny. (9) 
- m  

The symbol v will be omitted when no confusion is possible. Simple arithmetical 
devices allow four relations to be found between these sums : 

s6(x, y, 2) = 2-'s1(2x, 2y7 22) (10) 

Sl(X, Y, z) = 2-'S,(2x, 2Y, W+S,(x, y, Z)+S,(Y, x, Z)+S,(X, Y, z) (11) 

s1 = SJ+S5 (12) 

s5 = s,+s4. (13) 

We shall first evaluate S2 and S4. By adding them we shall find S5 by (13). S2 and S4 
being known, let us call f(x, y, z) = S4(x, y, z) + S4(y, x, z) + S2(x, y, z) ; then (1 1) allows 
us to write S1 under the form: 

m 

S,(x, y, z) = 1 2-'7-(2'x, 2'y, 2'2). 
I = O  

(14) 

When S1 is known, s6 can be deduced from (10) and S 3  follows from (12). So we need 
the values of S2 and S4. 

2.1. Calculation o f S , ( x ,  y, z) 

S, is defined by equation (5). We use the one-dimensional Poisson formula. In view of 
this we need the Fourier transform g(u) of the function of t : 

f ( t )  = [(2t- 1),+(2n- 1)2]-'/2Kv{z[(2t- 1),+(2n- 1)2]1/2} cos(2t- l)xcos(2n- I)y 

g(u) = J- f ( t )  exp(2inut) dt. 

The value of this integral is given in the tables of Gradshteyn and Ryzhik (1965,6.726-4, 
p 756). After performing all the calculations we find : 

S,(x, y, z ;  v )  = J(27c)z-' 1 I(- I ) * [ ~ ~ + ( x + n m ) ~ ] ( ~ " - ~ ) / ~ ( 2 n -  1)(1-2v)/2 cos(2n- 1)y 

+ m  

+ m  m 

-0c 1 
m n  

x K,- li2{(2n - 1) [z2 + (x + I Z M ) ~ ] ~ / ' } .  (15) 

2.2. Calculation ofS4(x, y ,  z) 

S ,  is defined by equation (7). The calculations are analogous; one finds : 

S4(x,y, z ;  v) = J(n)(22)-' CC (-- l ) n [ ~ ~ + ( y + n n ) ~ ~ ( ~ ~ - ~ ) ~ ~ m ( ~ - ~ ~ ) / ~  cos 2mx 
+ m  

- 0 0  

m,n 

2.3. Discussion of equations (15) and(16): special cases v = 0 , l  

Formulae (1 5 )  and (16) solve the problem of' evaluating S, and S ,  in a satisfactory manner 
since the results are obtained in the form of two expansions in terms of elementary 
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+ m  

S2(x, y, z ; 1) = (n/4z) 1 (- 1)" In 
- m  

functions. The reader will recall that when v is an integer Kv-l/2 is the product of a 
decreasing exponential and a polynomial. Moreover the asymptotic behaviour of K, 
ensures a rapid convergence. Two special cases are interesting: v = 0 and v = 1. In 
these cases equations (15) and (16) simplify in a neat way. We need the following classical 

cos y + cosh[z2 + (x + nm)2]112 
cos y - cosh[z2 + (x + 

formulae : 

m 

(2n-1)-' 
n =  1 

+ m  cos y+ cosh[z2 +(x + 
c ~ s y - c o s h [ z ~ + ( x + n m ) ~ ] ' / ~  Sdx, Y ,  z ; 1) = (n/4z) 1 In 

cos@- l)yexp[-(2n- l)a] = (1/4) ln((cos y+cosh a)(cos y-cosh a)-l l 

1 (l/n) cos ny exp( - na) = - (1/2) In1 1 + exp( - 2a) - 2 cos y exp( - a)l. 
m 

' 

n = l  

After performing the calculations we find the following remarkable results : 

- 1 1 2  ~ i n h ( z ~ + ( x + n m ) ~ ] ' / ~  + m  

S2(x, y, z ; 0) = (@) ( - 1)"[z2 + (x + nm) ] cosy 
- m  sinh2[z2 + (x + n ~ ) ~ ] ' / ~  + sin2y 
m 

(1 7) 

m 

m 

All these expansions are very well suited to the numerical computation of the Fourier 
series S I ,  . . . , S , .  

3. Evaluation of certain simple Fourier series 

The preceding section dealt with double sums. In practice simple sums containing K, 
functions are often encountered. This will be apparent in 0 4 which is devoted to appli- 
cations. Supposing we wish to evaluate the Fourier series : 

S = 1 K0[(2m + l)z] cos(2m + 1)y = (1/2) 1 K0[(2m + 1)z] cos(2m+ 1)y. 

If we evaluate this series through Poisson's one-dimensional rule, we should find 
without difficulty : 

m + m  

m = O  - m  

+ m  

s = (n/4) (-1y[z2+o,+nn)2]-1/2. 
- m  

The summand is now an elementary function but the convergence of the new series is 
very much worse than in the starting series. It is possible to re-arrange the terms in the 
summand in order to increase the rapidity of the convergence (Gradshteyn and Ryzhik 
1965) but no remarkable result can be obtained in this way. The aim of this section is 
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to show that S can be evaluated in an indirect way through Poisson's rule. The technique 
used is entirely analogous to that given in 62. We start with the definition of S ,  and 
split it into two parts : 

S,(x, y, z ;  v) = 2 
m 

(2n- I)-" cos(2n- 1)yKV[(2n- l)z] 
n =  1 

+ 2  [4m2+(2n- 1)2]-V/2Ky{z[4m2+(2n- 1)2]1'2} 

x cos 2mx cos(2n - 1)y. 
m = l  n = - w  

The sum over n in the last term is evaluated with the aid of Poisson's formula. Finally 
one finds (for the sake of brevity only the special cases v = 0 and v = 1 are written): 

1 K0[(2m + l)z] cos(2m + 1)y 
m 

0 

(21) 
m 
1 (2m+ 1)-'K1[(2m+ l)z] cos(2m+ l)y 
0 

+ m  

= (x/4Z) 2 ( - 1)" In1 1 + exp{ - 2[z2 + ( y  + 7 ~ m ) ~ I ~ ' ~ f  
- m  

+ 2( - 1)" cos y exp{ - [z2 + 0, + xm)'] '12}1. (22) 

Other sums of the same type can be deduced from (21) and (22) in the following way: 
let us calculate H0,, z )  = XF K,(mz)cos my. Equation (21) gives the value of 

m 

F(y,  z )  = 1 K0[(2m + l)z] cos(2m + 1)y. 
0 

However, 

F(Y, 2) = WY, 2) - W Y ,  2 4 ,  
thus 

m 

W Y ,  4 = 1 W ' Y ,  2'4 
l = O  

where F is given by (21). 

4. Applications 

4.1. The tabulation ofK,,(z)(v integer) 

Equations (21) and (22) allow an accurate tabulation of KO and K, in their critical 
domain 3 < z < 10. When z < 3 the power expansion in the neighbourhood of z = 0 
is rapidly convergent. When z > 10 the asymptotic expansion is convenient (Watson 
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1966). Between these two limits one can use equations (21) and (22) as follows. Put 
y = z/6 in both equations. We obtain (idem for K,) 

Ko(z) cos(a/6)+ K0(5z) cos(5n/6)+ K0(7z) cos(7z/6)+ . . . - (J(3)/2)K0(z) 

+ m  

= (44 )  ( -  1)"[z2 + n2(m+ 1/6)']- 'I2 
- W  

exp( - [z2 + n2(m + 1/6)2]'/2} +( - l)"(J(3)/2) 
cosh[z2 + z 2 ( m  + 1/6)2]'/2 + (- 1)"(4(3)/2) 

X 

with a relative accuracy better than K0(15)/K0(3) = 3 x 
For greater accuracy, replace z by 5z in equation (23) and add the new equation to 

(23). The new expansion will give Ko(z)  with a relative accuracy better than 
K0(21)/K0(3) = 6 x and so on for increasing accuracies. Once KO and K ,  are 
tabulated, the values of K , ,  K,, . . . can be deduced using the well known recurrence 
relations between the K,. 

4.2. The computation of the Madelung constant in crystal physics 

Multiple sums frequently occur in crystal physics. One of the most famous is the 
Madelung sum. In the case of the NaCl structure this sum can be written as: 

+ m  

a(NaC1) = c c' ( -  l )m+n+p+ (mZ + nz  + p z ) -  '1' 
- 0 3  

where the prime indicates that one excludes the case m = n = p = 0. 
The three-dimensional Poisson formula cannot be used because of the omission of 

one term in the sum. After some calculations the one-dimensional Poisson formula 
leads to : 

+ m  a; 

a(NaC1) = 21n2+4 c'c (-l)m+"+1Ko[z(2k+l)(m2+n2)1/2]. (24) 
- w  k = O  

This formula is essentially analogous to the one discovered earlier by Madelung (1918). 
K,(z) is the modified Bessel function of the third kind (Abramowitz and Stegun 1965). 
The two-dimensional Poisson formula shows : 

1 1 ( -  l)'"+"(mZ + n2 + p 2 ) -  '1' 
- m  
m,k 

This formula was known to Shermann (1932). However, he was unable to go further in 
the computation of a(NaC1) since this requires the evaluation of (Glasser 1973): 
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c and fl are Riemann’s zeta and beta functions. Finally one has : 

a(NaC1) = 4(1-J2)[(1/2)fl(1/2)+ 16 cc [(2m+ 1)’+(2n+ 1)’]-11’ 
m 

0 

x {exp n[(2m+ 1)’ +(2n + 1)’11/’ + I} - l .  (26) 

This formula was first established with the aid of Schlomilch series (Hautot 1974). We 
rediscover it here in a simpler way. It is interesting to compare equation (24) with 
equation (26). The expansion (24) converges rapidly on account of the asymptotic 
behaviour of Ko(z)  - (n /2~) ’ /~  exp(-z). However, (24) needs the tabulation of KO. 
This drawback does not exist with equation (26) since apart from the first term in the 
second member all the other terms only involve elementary functions. 

It is possible to refine equation (26) in a beautiful way. In equation (24) we try to 
evaluate the double sum : 

ik’(- 1)m+n+1Ko[n(2k+ l)(m2+n2)112]. 
- m  
m,n 

It is clear that this equals: - Sl (q  n, 2 ;  0) with z = (2k+ 1)n. S, is computed with the 
aid of (14), (17) and (19). We find 

w + m  

S,(n,n,z;O) = (n/2) C 1 [2+(- I)”] c 0 ~ ( 2 ’ n ) [ 2 ~ ’ ~ ~ + ( 2 ’ + m ) ~ n ~ ] - ~ / ~  
1=0 -cc 

m 

x c0sech[2~’z’ + (2’ + m)’n’] l i ’. 

Hence we obtain : 

a(NaC1) = 2 In 2 - 2 
m + m  

[2 + ( - l)”] cos(2’n) [(2k + 1)”” + (2’ + m)’] - 
0 - m  
k,l m 

x cosech 7t[(2k+ 1)2221+(21+m)2]’i2. 

We split the h u m  into two parts: 
m m 

= ( I = O ) +  E. 
l = O  1 = 1  

Taking into account the identity: 
m m m  

f(4k’) = f[22’(2k+1)2] 
k =  1 1 = 1  k = O  

we find after some manipulations: 

a(NaC1) = 2 In 2 + 2 
m 00 

(2k+ 1)- ’ cosech(2k + l)n -6 c (24-  cosech 2kn 

([(2k- 1)’+(2m- l)’]-l/’ cosech n[(2k- 1)’+(2m- 1)’]’/’ 

k = O  k =  1 
m + 12 

- (4k2 + 4m’)- 1/2 cosech n(4k2 + 4m2)1/2}, 
1 
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The simple series can be evaluated exactly (see appendix). Finally the following useful 
expansion is obtained : 

a(NaC1) = (9/2)1n2-(~/2)+ 1 2 1 1  {[(2k-1)2+(2m- 1)2]-1/2 
m 

1 

xcosech 77[(2k- 1)2+(2m- 1)2]1/2-(4k2+4m2)-1i2cosechn(4k2+4m2)112} 

(27) 
which appears to be the best known expansion for a(NaC1). Consider a numerical 
example: three terms in the double series give: 

a(NaC1) 2: (9/2) In 2 - (n/2) 

+ 12[(cosech n J2)/ J2 + 2(cosech n JlO)/J lO- (cosech n,/8)/,/8] 

= 1*74756(28) accurate to 

Nine terms in the series give a with ten figures. 

and zinc blende) can be evaluated in a similar way. We know that (Hautot 1974) : 
The Madelung constant for the other fundamental cubic structures (caesium chloride 

m m 
a(CsC1) = 2a(NaCl)- 121(2k- l ) - ’  cosechn(2k-l)-24CC[(2k-1)2+m2]-”2 

1 1 

x cosech n[(2k- I)’+ 1112]1/2 

m m 
a(ZnS) = a(CsC1)+3 In 2-6 1 k-’  cosech kn + 12 E(- 

1 1 

x ( k 2  + m2)- 112 cosech n(k2 +m2)lI2, 

Evaluating the simple series (see appendix) and combining with (27) we find: 
m 

a(CsC1) = (1 5/2) In 2 - n - 24 1 1 ( k 2  + 4m2)- cosech n(k2 + 4m2)”’ (28) 
1 

W 

a(ZnS) = 12 In 2 - (311/2) - 36 1 1 (k2  + 4m2)- cosech n(k2 + 4m2)li2 
1 

m 

+ 12 1 [k2+(2m- 1)2]-1/2 cosech n[k2+(2m- 1)2]1/2. (29) 
1 

Examining equations (27), (28) and (29) we see that they are connected by the curious 
relation : 

a(ZnS) = a(NaCl)+ a(CsC1). 

It seems that this simple formula has never been mentioned in the literature. The 
numerical values of a are calculated from (27), (28) and (29) : 

a(NaC1) = 1.74756459463 

a(CsC1) = 2.03536150945 

a(ZnS) = 3.78292610408. 
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5. 'IBe Madelung constant in finite form? 

Is it possible to go further than equations (27), (28) and (29)? The problem has been 
suggested by Glasser (1973) in the following terms: is it possible to express a exactly in 
finite form? Up to now the answer has been negative because this would require the 
exact evaluation of double series such as : 

m 

1 ( k 2  + m2)-  ' I 2  cosech n(k2 + 12)112 = ? 
1 

This has never been performed successfully. The sole series of this kind that we have 
succeeded in summing is the following : 

m 

( -  1)'(k2 + m 2 ) -  '12[exp .(k2 + m2)'12 +( - I)'"]- l 
1 

= (9/16) In 2-(n/16)-(1/2)(1-,/2)((1/2)~(1/2) = -0.0083970802. 

The proof is left to the reader: starting with equation (25) and using successive appli- 
cations of the one-dimensional Poisson formula and of equation (21) one obtains the 
above result. 

6. Conclusion 

Poisson's summation formula has been used to sum certain Fourier series. In definite 
cases one obtains better expansions than those previously established. Many sums 
occurring in crystal physics can be evaluated with improved accuracy through this 
procedure. 

Appendix 

In 0 4 we had to sum exactly some unusual series. Here we prove the following curious 
relations : 

m 

Ck-'cosechkn = (n/12)-(1/4)1n2 

1 (2k)-' cosech 2kn = (n/12)-(3/8) In 2. 

1 

m 

1 

More generally let us calculate : 

f ( z )  = C k- cosech kz 
m 

1 

" 

= 2 1 1 k-'exp[-(2n+l)kz] 

= -In n {1-exp[-(2n+l)~]}~. 

n = O  k = l  

m 

n = O  
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Infinite products of this kind are encountered in the theory of elliptic functions 
(Whittaker and Watson 1963). Using traditional notations for the complete elliptic 
integral of the first kind K(k)  of modulus k(k'2 = 1 - k 2 ;  K' = K(k')) one finds: 

(32) 
with z = n(K'/K).  A theorem of Abel allows us to calculate k exactly in finite form 
provided K ' / K  is of the form (a + bJm)/(a' + b',/n) where all six numbers are integers 
(Whittaker and Watson 1963). To calculate (30) we note that z = 7t so that K' = K .  
Then knowing that k = 1/42, by (32) we get: 

f(z) = -(1/3)1n 2+(z/12)-(1/6)1n [k-'(l -kz)] 

f(n) = (n/12)-(1/4) In 2. 

To calculate (31) we note that z = 2n so that K'  = 2K. Then k = 3-242 and by (32) 
we get : 

f(2n) = (n/6) - (3/4) In 2. 

Numerous series of this type can be evaluated exactly in a similar way. 
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